Part Number Hot Search : 
2SD2493 65R01 HD64F 13000 105S12FS SMDA12C 00100 3T306F
Product Description
Full Text Search
 

To Download IRF6638PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 97239
IRF6638PBF IRF6638TRPbF
DirectFET Power MOSFET RoHs Compliant Typical values (unless otherwise specified) l Lead-Free (Qualified up to 260C Reflow) VDSS VGS RDS(on) RDS(on) l Application Specific MOSFETs l Ideal for CPU Core DC-DC Converters 30V max 20V max 2.2m@ 10V 3.0m@ 4.5V l Low Conduction Losses Qg tot Qgd Qgs2 Qrr Qoss Vgs(th) l High Cdv/dt Immunity 30nC 11nC 3.2nC 27nC 18.4nC 1.8V l Low Profile (<0.7mm) l Dual Sided Cooling Compatible l Compatible with existing Surface Mount Techniques
l
MX
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
SQ SX ST MQ MX MT MP
DirectFET ISOMETRIC
Description
The IRF6638PBF combines the latest HEXFET(R) Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.6 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6638PBF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6638PBF has been optimized for parameters that are critical in synchronous buck including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6638PBF offers particularly low Rds(on) and high Cdv/dt immunity for synchronous FET applications.
Absolute Maximum Ratings
Parameter
VDS VGS ID @ TA = 25C ID @ TA = 70C ID @ TC = 25C IDM EAS IAR
10
Typical RDS(on) (m)
Max.
Units
V
Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Single Pulse Avalanche Energy Avalanche CurrentAg
g
e e f
h
VGS, Gate-to-Source Voltage (V)
30 20 25 20 140 200 37 20
6.0 5.0 4.0 3.0 2.0 1.0 0.0 0 5 10 15 20 25 30 ID= 20A VDS= 24V VDS= 15V
A
mJ A
8 6 4 2 0 T J = 25C
ID = 25A
VDS= 6.0V
T J = 125C
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 VGS, Gate -to -Source Voltage (V)
Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state.
Fig 1. Typical On-Resistance Vs. Gate Voltage
35
QG Total Gate Charge (nC)
Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage
TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25C, L = 0.19mH, RG = 25, IAS = 20A.
www.irf.com
1
07/13/06
IRF6638PBF
Static @ TJ = 25C (unless otherwise specified)
Parameter
BVDSS VDSS/TJ RDS(on) VGS(th) VGS(th)/TJ IDSS IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr td(off) tf Ciss Coss Crss Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) Output Charge Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance
Min.
30 --- --- --- 1.35 --- --- --- --- --- 105 --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
Typ. Max. Units
--- 22 2.2 3.0 1.8 -5.6 --- --- --- --- --- 30 6.7 3.2 11 9.1 14.2 18.4 1.3 19 45 28 6.2 3770 810 410 --- --- 2.9 3.9 2.35 --- 1.0 150 100 -100 --- 45 --- --- --- --- --- --- --- --- --- --- --- --- --- --- pF ns nC
Conditions
VGS = 0V, ID = 250A
V
mV/C Reference to 25C, ID = 1mA m VGS = 10V, ID = 25A i VGS = 4.5V, ID = 20A i V mV/C A nA S VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 125C VGS = 20V VGS = -20V VDS = 15V, ID = 20A VDS = 15V nC VGS = 4.5V ID = 20A See Fig. 15 VDS = 16V, VGS = 0V VDD = 16V, VGS = 4.5V c ID = 20A Clamped Inductive Load See Fig. 16 & 17 VGS = 0V VDS = 15V = 1.0MHz VDS = VGS, ID = 100A
Diode Characteristics
Parameter
IS ISM VSD trr Qrr Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) g Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge --- --- --- --- --- --- 19 27 200 1.0 29 41 V ns nC
Min.
---
Typ. Max. Units
--- 3.5 A
Conditions
MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25C, IS = 20A, VGS = 0V i TJ = 25C, IF = 20A di/dt = 300A/s i See Fig. 18
Notes:
Repetitive rating; pulse width limited by max. junction temperature. Pulse width 400s; duty cycle 2%.
2
www.irf.com
IRF6638PBF
Absolute Maximum Ratings
PD @TA = 25C PD @TA = 70C PD @TC = 25C TP TJ TSTG Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range
e e f
Parameter
Max.
2.8 1.8 89 270 -40 to + 150
Units
W
C
Thermal Resistance
RJA RJA RJA RJC RJ-PCB Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Linear Derating Factor
100
em km lm fm
Parameter
Typ.
--- 12.5 20 --- 1.0 0.022
Max.
45 --- --- 1.4 ---
Units
C/W
eA
W/C
D = 0.50
Thermal Response ( Z thJA )
10
0.20 0.10 0.05 0.02 0.01
J J 1 1 R1 R1 2 R2 R2 R3 R3 3 R4 R4 A 2 3 4 4 A
1
0.1
0.01
SINGLE PULSE ( THERMAL RESPONSE )
Ci= i/Ri Ci= i/Ri
Ri (C/W) i (sec) 1.280114 0.000322 8.725568 0.164798 21.75 2.2576 13.25114 69
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc
0.01 0.1 1 10 100 1000
0.001 1E-006 1E-005 0.0001 0.001
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
Notes:
Used double sided cooling , mounting pad. Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
R is measured at TJ of approximately 90C.
Surface mounted on 1 in. square Cu (still air).
Mounted to a PCB with small clip heatsink (still air)
Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air)
www.irf.com
3
IRF6638PBF
1000
TOP VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V
1000
TOP VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V
ID, Drain-to-Source Current (A)
100
BOTTOM
ID, Drain-to-Source Current (A)
100
BOTTOM
10
60s PULSE WIDTH
1 2.5V 0.1 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) Tj = 25C
10 2.5V
60s PULSE WIDTH
Tj = 150C 1 0.1 1 10 100 V DS, Drain-to-Source Voltage (V)
Fig 4. Typical Output Characteristics
1000 VDS = 15V 60s PULSE WIDTH 100
Fig 5. Typical Output Characteristics
1.6 ID = 25A
Typical RDS(on) (Normalized)
ID, Drain-to-Source Current ()
1.4
1.2
10 T J = 150C T J = 25C 1 T J = -40C
1.0 V GS = 10V 0.8 V GS = 4.5V
0.1 1 2 3 4 5
0.6 -60 -40 -20 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (C)
Fig 6. Typical Transfer Characteristics
100000
VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd
VGS, Gate-to-Source Voltage (V)
Fig 7. Normalized On-Resistance vs. Temperature
30
TJ = 25C
25
Typical RDS(on) ( m)
C oss = C ds + C gd
C, Capacitance(pF)
10000 Ciss
20 15 10 5 0
Vgs = 3.5V Vgs = 4.0V Vgs = 4.5V Vgs = 5.0V Vgs = 10V
1000
Coss Crss
100 1 10 VDS, Drain-to-Source Voltage (V) 100
0
20 40 60 80 100 120 140 160 180 200 220 ID, Drain Current (A)
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
Fig 9. Typical On-Resistance Vs. Drain Current and Gate Voltage
4
www.irf.com
IRF6638PBF
1000
1000 OPERATION IN THIS AREA LIMITED BY R DS(on)
100
T J = 150C T J = 25C T J = -40C
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
100
100sec 1msec
10
10
10msec
1 VGS = 0V 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 VSD, Source-to-Drain Voltage (V)
1 Tc = 25C Tj = 150C Single Pulse 0.1 0 1 10 100 VDS, Drain-to-Source Voltage (V)
Fig 10. Typical Source-Drain Diode Forward Voltage
150 125
ID, Drain Current (A) Typical VGS(th) Gate threshold Voltage (V)
Fig11. Maximum Safe Operating Area
2.5
100 75 50 25 0 25 50 75 100 125 150 T C , Case Temperature (C)
2.0
ID = 250A 1.5
1.0 -75 -50 -25 0 25 50 75 100 125 150 T J , Temperature ( C )
Fig 12. Maximum Drain Current vs. Case Temperature
150
EAS , Single Pulse Avalanche Energy (mJ)
Fig 13. Typical Threshold Voltage vs. Junction Temperature
ID 5.5A 6.5A BOTTOM 20A TOP
125 100 75 50 25 0 25 50 75
100
125
150
Starting T J , Junction Temperature (C)
Fig 14. Maximum Avalanche Energy Vs. Drain Current
www.irf.com
5
IRF6638PBF
Current Regulator Same Type as D.U.T.
Id Vds
50K 12V .2F .3F
Vgs
D.U.T. VGS
3mA
+ V - DS
Vgs(th)
IG
ID
Current Sampling Resistors
Qgs1 Qgs2
Qgd
Qgodr
Fig 15a. Gate Charge Test Circuit
Fig 15b. Gate Charge Waveform
V(BR)DSS
15V
tp
DRIVER
VDS
L
VGS RG
D.U.T
IAS
+ V - DD
A
20V
tp
0.01
I AS
Fig 16b. Unclamped Inductive Waveforms
Fig 16a. Unclamped Inductive Test Circuit
LD VDS
90%
+
VDD D.U.T VGS Pulse Width < 1s Duty Factor < 0.1%
VDS
10%
VGS
td(on) tr td(off) tf
Fig 17a. Switching Time Test Circuit
Fig 17b. Switching Time Waveforms
6
www.irf.com
IRF6638PBF
D.U.T
Driver Gate Drive
+
P.W.
Period
D=
P.W. Period VGS=10V
+
Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
-
-
+
RG
* * * * di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test
VDD
VDD
+ -
Re-Applied Voltage
Body Diode
Forward Drop
Inductor Curent Inductor Current
Ripple 5% ISD
* VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET(R) Power MOSFETs
DirectFET Board Footprint, MX Outline (Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs.
G = GATE D = DRAIN S = SOURCE
D S G S D
D
D
www.irf.com
7
DirectFET Outline Dimension, MX Outline (Medium Size Can, X-Designation).
IRF6638PBF
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC CODE MIN MAX A 6.35 6.25 B 4.80 5.05 C 3.95 3.85 D 0.45 0.35 E 0.72 0.68 F 0.72 0.68 1.42 G 1.38 H 0.84 0.80 J 0.42 0.38 K 0.88 1.01 L 2.41 2.28 M 0.616 0.676 R 0.020 0.080 P 0.17 0.08 IMPERIAL MIN MAX 0.246 0.250 0.189 0.201 0.152 0.156 0.014 0.018 0.027 0.028 0.027 0.028 0.054 0.056 0.032 0.033 0.015 0.017 0.035 0.039 0.090 0.095 0.0235 0.0274 0.0008 0.0031 0.003 0.007
DirectFET Part Marking
8
www.irf.com
IRF6638PBF
DirectFET Tape & Reel Dimension (Showing component orientation).
NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6638TRPBF). For 1000 parts on 7" reel, order IRF6638TR1PBF REEL DIMENSIONS STANDARD OPTION (QTY 4800) TR1 OPTION (QTY 1000) IMPERIAL METRIC IMPERIAL METRIC MIN MAX MIN CODE MAX MIN MIN MAX MAX 12.992 N.C 6.9 A N.C 177.77 N.C 330.0 N.C 0.795 0.75 B N.C 19.06 20.2 N.C N.C N.C 0.504 0.53 C 0.50 13.5 12.8 0.520 12.8 13.2 0.059 0.059 D 1.5 N.C 1.5 N.C N.C N.C 3.937 2.31 E 58.72 N.C 100.0 N.C N.C N.C F N.C N.C 0.53 N.C N.C 0.724 13.50 18.4 G 0.488 0.47 11.9 N.C 12.4 0.567 12.01 14.4 H 0.469 0.47 11.9 N.C 11.9 0.606 12.01 15.4
LOADED TAPE FEED DIRECTION
CODE A B C D E F G H
DIMENSIONS IMPERIAL METRIC MIN MAX MIN MAX 0.311 0.319 7.90 8.10 0.154 0.161 3.90 4.10 0.469 0.484 11.90 12.30 0.215 0.219 5.45 5.55 0.201 0.209 5.10 5.30 0.256 6.50 0.264 6.70 0.059 1.50 N.C N.C 0.059 1.50 0.063 1.60
Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.07/06
www.irf.com
9
Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/


▲Up To Search▲   

 
Price & Availability of IRF6638PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X